The k-means Algorithm: A Comprehensive Survey and Performance Evaluation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Evaluation of Incremental K-means Clustering Algorithm

The incremental K-means clustering algorithm has already been proposed and analysed in paper [Chakraborty and Nagwani, 2011]. It is a very innovative approach which is applicable in periodically incremental environment and dealing with a bulk of updates. In this paper the performance evaluation is done for this incremental K-means clustering algorithm using air pollution database. This paper al...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

A Comprehensive Survey on Centroid Selection Strategies for Distributed K-means Clustering Algorithm

Extremely large data sets often known as ‘Big Data’ are analyzed for interesting patterns, trends, and associations, especially those relating to human behavior and interactions. Extraction of meaningful and useful information needs to be done in parallel using advanced clustering algorithms. In this paper, effort has been made to tweak in changes to the existing K-means algorithm so as to work...

متن کامل

Theoretical Analysis of the k-Means Algorithm - A Survey

Clustering is a basic process in data analysis. It aims to partition a set of objects into groups called clusters such that, ideally, objects in the same group are similar and objects in different groups are dissimilar to each other. There are many scenarios where such a partition is useful. It may, for example, be used to structure the data to allow efficient information retrieval, to reduce t...

متن کامل

A Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS

Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2020

ISSN: 2079-9292

DOI: 10.3390/electronics9081295